Finding Local Extrema The First and Second Derivative Tests

Math 130 - Essentials of Calculus

8 November 2019

Review - Increasing/Decreasing

Theorem

(1) If $f^{\prime}(x)>0$ on an interval, then $f(x)$ is increasing on that interval.
(2) If $f^{\prime}(x)<0$ on an interval, then $f(x)$ is decreasing on that interval.

Review - Increasing/Decreasing

Theorem

(1) If $f^{\prime}(x)>0$ on an interval, then $f(x)$ is increasing on that interval.
(2) If $f^{\prime}(x)<0$ on an interval, then $f(x)$ is decreasing on that interval.

Example

Find the intervals on which the given function is increasing and decreasing
(1) $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$

Review - Increasing/Decreasing

Theorem

(1) If $f^{\prime}(x)>0$ on an interval, then $f(x)$ is increasing on that interval.
(2) If $f^{\prime}(x)<0$ on an interval, then $f(x)$ is decreasing on that interval.

Example

Find the intervals on which the given function is increasing and decreasing
(1) $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$
(2) $f(x)=2 x^{3}-3 x^{2}-12 x$

The First Derivative Test

Theorem (The First Derivative Test)

Suppose that c is a critical number of a continuous function f.
(1) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(2) If f^{\prime} changes from negative to positive at c, then f has a local maximum at c.
(3) If f^{\prime} does not change sign at c (for example, if f^{\prime} is positive on both sides of c or negative on both sides), then f has no local maximum or minimum at c.

Example

Example
Find the local maximum and minimum values of $f(x)=2 x^{3}-3 x^{2}-12 x$.

Review - Concavity

Definition
A function $f(x)$
(1) is concave upward on a interval if f^{\prime} is an increasing function on that interval.

Review - Concavity

Definition
A function $f(x)$
(1) is concave upward on a interval if f^{\prime} is an increasing function on that interval.
(2) is concave downward on a interval if f^{\prime} is a decreasing function on that interval.

Review - Concavity

Definition
A function $f(x)$
(1) is concave upward on a interval if f^{\prime} is an increasing function on that interval.
(2) is concave downward on a interval if f^{\prime} is a decreasing function on that interval.
(3) has an inflection point $x=c$ if f is continuous there and the concavity changes from upward to downward, or downward to upward.

Review - Concavity

Definition
A function $f(x)$
(1) is concave upward on a interval if f^{\prime} is an increasing function on that interval.
(2) is concave downward on a interval if f^{\prime} is a decreasing function on that interval.
(3) has an inflection point $x=c$ if f is continuous there and the concavity changes from upward to downward, or downward to upward.

Theorem

(1) If $f^{\prime \prime}(x)>0$ on an interval, then $f(x)$ is concave upward on that interval.
(2) If $f^{\prime \prime}(x)<0$ on an interval, then $f(x)$ is concave downward on that interval.

Review - Concavity

Definition
A function $f(x)$
(1) is concave upward on a interval if f^{\prime} is an increasing function on that interval.
(2) is concave downward on a interval if f^{\prime} is a decreasing function on that interval.
(3) has an inflection point $x=c$ if f is continuous there and the concavity changes from upward to downward, or downward to upward.

Theorem

(1) If $f^{\prime \prime}(x)>0$ on an interval, then $f(x)$ is concave upward on that interval.
(2) If $f^{\prime \prime}(x)<0$ on an interval, then $f(x)$ is concave downward on that interval.

Concavity Example

Example

Find the intervals of concavity and inflection points for the given function.
(1) $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$

Concavity Example

Example

Find the intervals of concavity and inflection points for the given function.
(1) $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$
(2) $f(x)=2 x^{3}-3 x^{2}-12 x$

Concavity Example

Example

Find the intervals of concavity and inflection points for the given function.
(1) $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$
(2) $f(x)=2 x^{3}-3 x^{2}-12 x$
(3) $y=x^{4}-4 x^{3}$

